The deck of this bridge has
been designed on the

basis of its ability to resist
bending stress.

Strength of Materials: Second Class
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6.4 The Flexure Formula

 Assume that material behaves in a linear-elastic
manner so that Hooke's law applies.

* A /inear variation of normal strain
mustthen be the consequence of
a /inear variation in normal stress

* Applying Hooke's law to Eqn 6-8, o
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Equation 6-9 = —(V/ ) Opax

Bending stress vanation
(profile view)
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By mathematical expression, ) )
equilibrium equations of
moment and forces, we get

Equation 6-10 /, yd4=0

Bending stress variation

jax / Vz A (©)

O,

Equation 6-11 jy=

* The integral represents the moment of inertia of x-
sectional area, computed about the neutral axis.
We symbolize its value as 1
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* Hence, Egn 6-11 can be solved and written as
Mc

Equation 6-12 0,,,, =

Cae = Maximum normal stress in member, at a pt on
x-sectional area farthest away from neutral axis

M = resultant internal moment, computed about
neutral axis of x-section

7= moment of inertia of x-sectional area computed
about neutral axis

c = perpendicular distance from neutral axis to a pt
farthest away from neutral axis, where o, acts

1/23/2017
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* Normal stress at intermediate distance y can be

determined from
My

Equation 6-13 0=— -T

« ols-ve as It acts in the -ve direction (compression)

« Equations 6-12 and 6-13 are often referred to as
the flexure formula.

I'M SO TIRED
MY TIRED IS
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Important Points

v" The cross section of a straight beam remains plane when the beam
deforms due to bending. This causes fensi/e stresson one portion of the
Ccross section and compressive stresson the other portion. In between
these portions, there exists the neutral axis which is subjected to zero
Stress.

v" < Due to the deformation, the /ongitudinal strainvaries linearly from
zero at the neutral axis to a maximum at the outer fibers of the beam.
Provided the material is homogeneous and linear elastic, then the stress
also varies in a /inearfashion over the cross section.
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Important Points

v The neutral axis passes through the centroid of the cross-sectional area.
This result is based on the fact that the resultant normal force acting on the
Cross section must be zero.

v The flexure formula is based on the requirement that the resultant internal
moment on the cross section is equal to the moment produced by the
normal stress distribution about the neutral axis.
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Procedure for Analysis

** Internal Moment.

* Section member at point where bending or normal stress is
to be determined and obtain_internal moment M at the
section.

e (Centroidal or neutral axis for cross-section must be known
since M is computed about this axis.

* If absolute maximum bending stress is to be determined,
then draw_moment diagram in_order to determine the
maximum moment in the diagram.
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Procedure for Analysis

¢ Section Property.

* Determine moment of inertia I, of cross-sectional area about

the neutral axis.
* Methods used are discussed in Textbook Appendix A.

* Refer to the course book’s inside front cover for the values of
I for several common shapes.
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BENDING STRESS 4

Moment of Inertia of composite area

92
)
é_)ﬁ A composite area is made by adding or subtracting a series of
= “simple shaped areas” like
S bir’ hb’
8 > RECtHIlglES: ]CEI]TI'O‘idHI — T ;]CEIIU‘Oidﬂl — .
(./). X-axis 12 y-axis 12
b
© 3 3
= N T I bh” . )i A
= » Triangles: centioidal — 55 > Lcenmoidal = 5,
> X-ax1s 36 y-axis 36
S 4
ar
E f Ci[‘ClES: Icentljoidal — Icenn:cidal — 4 d’f.fé’ 70 i F?‘?F?‘?E-’f?’y
(@) X-axis V-axis
c
&
O PARALLEL-AXIS 7 2 7 >
LEL- I, =1,+Ad 1 =1+ Ad
THEOREM yoooy * 2
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Procedure for Analysis

*»* Normal Stress.

* Specify distance y, measured perpendicular to neutral axis
to point where normal stress is to be determined.

* Apply equation ¢ = -My/l, or if maximum bending stress is
needed, use o = Mc/I.

max

* Ensure units are consistent when substituting values into the
equations
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Ex1:-

A beam has a rectangular cross section and is subjected to the stress
distribution shown in Fig. 6-27a. Determine the internal moment M
at the section caused by the stress distribution (a) using the flexure
formula, (b) by finding the resultant of the stress distribution using
basic principles.
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Solution

Part (a). The flexure formula is on. = Mc/l. From Fig. 6-27a,
¢ = 60 mm and o,,,,x = 20 MPa. The neutral axis is defined as line NA,
because the stress is zero along this line. Since the cross section has a
rectangular shape, the moment of inertia for the area about NA is
determined from the formula for a rectangle given on the inside front
cover; i.e.,

I= %bfﬁ = 11—2(60 mm)(120 mm)? = 864(10*) mm*

Therefore,
_ Mc »  M(60 mm)
Omax ==y 20NmMm™= 2o 0% mm®

M =288(10") N - mm = 2.88 kN - m
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Part (b). First we will show that the resultant force of the stress
distribution is zero. As shown in Fig. 6-27b, the stress acting on the arbi-
trary element strip dA = (60 mm) dy, located y from the neutral axis, is

_ — Y 2
o (GOmm)(zo N/mm~)
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The force created by this stress is dF = o dA, and thus, for the entire
cross section,

Fr= L odA =f+m o [( _:f-:m (20 N!mmz)](ﬁﬂ mm) dy

—60 mm 60
+60 mm
= (—10 N/mm?) y? o = 0

The resultant moment of the stress distribution about the
neutral axis (z axis) must equal M. Since the magnitude of the
moment of dF about this axis is dM =y dF, and dM is always
positive, Fig. 6-27b, then for the entire area

+60 mm

M=J de=j y
A —60 mm

20 +60 mm

= —N!mmz) 3
(2

( ﬁ)aﬁ memz)] (60 mm) dy

—60 mm A Y

= 288(10YY N-mm = 2.88 kN -m dr Ans.
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The above result can also be determined without the need for
integration. The resultant force for each of the two triangular stress
distributions in Fig. 6-27c is graphically equivalent to the volume
contained within each stress distribution. Thus, each volume is

= 2(60 mm)(20 N/mm?)(60 mm) = 36(10°) N = 36 kN
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Maximum Internal Moment.
The maximum internal moment in the beam, M= 22.5 kN. m, occurs at the
center.

M (kN-m)

22.5'F

x (m)

(c)
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Section Property.

By reasons of symmetry, the neutral axis passes through the centroid Cat the
mid height of the beam, Fig. 6-26 &. The area is subdivided into the three
parts shown, and the moment of inertia of each part is calculated about the
neutral axis using the parallel-axis theorem. (See Eq. A-5 of Appendix A .)
Choosing to work in meters, we have

=30+ Ad% zOmml—
| T B:! il
150 mm
= 2[5(0.25 m)(0.020 m)® + (0.25 m)(0.020 m)(0.160 m)z] . e
1 3 20 mm —=| [+— : T
19 150 mm
+ [ > (0.020 m)(0.300 m) oy o
mm _ "
= 301.3(10°% m* TL Y
M 22.5(10% N - m(0.170 250 mm —=
O = 1t O = e DT OLAM 17 MPa A
! AT AT m 73
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A three-dimensional view of the stress distribution is shown In
Fig. 6-26d. Notice how the stress at points B and D) on the cross section
develops a force that contributes a moment about the neutral axis
that has the same direction as M. Specifically, at point B,y = 150 mm,
and so as shown in Fig. 6-264,

112 MPa__

™,

e, 112 MPa _ _Myﬂ.

orp — .
__-127MPa I/
_-11.2 MPa

M =225kN'm

22.5(10°) N m(0.150 m)
I 301.3(107%) m*

12.7 MPa
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—11.2 MPa

(d)
Fig. 6-26
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